(4x^3-8xy^2+2)dx+(4y^3-8x^2)dy=0

Simple and best practice solution for (4x^3-8xy^2+2)dx+(4y^3-8x^2)dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^3-8xy^2+2)dx+(4y^3-8x^2)dy=0 equation:


Simplifying
(4x3 + -8xy2 + 2) * dx + (4y3 + -8x2) * dy = 0

Reorder the terms:
(2 + -8xy2 + 4x3) * dx + (4y3 + -8x2) * dy = 0

Reorder the terms for easier multiplication:
dx(2 + -8xy2 + 4x3) + (4y3 + -8x2) * dy = 0
(2 * dx + -8xy2 * dx + 4x3 * dx) + (4y3 + -8x2) * dy = 0
(2dx + -8dx2y2 + 4dx4) + (4y3 + -8x2) * dy = 0

Reorder the terms:
2dx + -8dx2y2 + 4dx4 + (-8x2 + 4y3) * dy = 0

Reorder the terms for easier multiplication:
2dx + -8dx2y2 + 4dx4 + dy(-8x2 + 4y3) = 0
2dx + -8dx2y2 + 4dx4 + (-8x2 * dy + 4y3 * dy) = 0
2dx + -8dx2y2 + 4dx4 + (-8dx2y + 4dy4) = 0

Reorder the terms:
2dx + -8dx2y + -8dx2y2 + 4dx4 + 4dy4 = 0

Solving
2dx + -8dx2y + -8dx2y2 + 4dx4 + 4dy4 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), '2d'.
2d(x + -4x2y + -4x2y2 + 2x4 + 2y4) = 0

Ignore the factor 2.

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(x + -4x2y + -4x2y2 + 2x4 + 2y4)' equal to zero and attempt to solve: Simplifying x + -4x2y + -4x2y2 + 2x4 + 2y4 = 0 Solving x + -4x2y + -4x2y2 + 2x4 + 2y4 = 0 Move all terms containing d to the left, all other terms to the right. Add '-1x' to each side of the equation. x + -4x2y + -4x2y2 + 2x4 + -1x + 2y4 = 0 + -1x Reorder the terms: x + -1x + -4x2y + -4x2y2 + 2x4 + 2y4 = 0 + -1x Combine like terms: x + -1x = 0 0 + -4x2y + -4x2y2 + 2x4 + 2y4 = 0 + -1x -4x2y + -4x2y2 + 2x4 + 2y4 = 0 + -1x Remove the zero: -4x2y + -4x2y2 + 2x4 + 2y4 = -1x Add '4x2y' to each side of the equation. -4x2y + -4x2y2 + 2x4 + 4x2y + 2y4 = -1x + 4x2y Reorder the terms: -4x2y + 4x2y + -4x2y2 + 2x4 + 2y4 = -1x + 4x2y Combine like terms: -4x2y + 4x2y = 0 0 + -4x2y2 + 2x4 + 2y4 = -1x + 4x2y -4x2y2 + 2x4 + 2y4 = -1x + 4x2y Add '4x2y2' to each side of the equation. -4x2y2 + 2x4 + 4x2y2 + 2y4 = -1x + 4x2y + 4x2y2 Reorder the terms: -4x2y2 + 4x2y2 + 2x4 + 2y4 = -1x + 4x2y + 4x2y2 Combine like terms: -4x2y2 + 4x2y2 = 0 0 + 2x4 + 2y4 = -1x + 4x2y + 4x2y2 2x4 + 2y4 = -1x + 4x2y + 4x2y2 Add '-2x4' to each side of the equation. 2x4 + -2x4 + 2y4 = -1x + 4x2y + 4x2y2 + -2x4 Combine like terms: 2x4 + -2x4 = 0 0 + 2y4 = -1x + 4x2y + 4x2y2 + -2x4 2y4 = -1x + 4x2y + 4x2y2 + -2x4 Add '-2y4' to each side of the equation. 2y4 + -2y4 = -1x + 4x2y + 4x2y2 + -2x4 + -2y4 Combine like terms: 2y4 + -2y4 = 0 0 = -1x + 4x2y + 4x2y2 + -2x4 + -2y4 Simplifying 0 = -1x + 4x2y + 4x2y2 + -2x4 + -2y4 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| x=-13-3-8 | | 3x+(2x+50)=150 | | 4/3t=8/11 | | 3x-7=84-10x | | 3x^2+5x-360=0 | | S(p)=-340+40p | | 3x^2+5x-270=0 | | 15-y=4y | | 4x^2-6x-216=0 | | 7x+5-6+4x= | | 3/7=2/9x | | 12x^2+8x^2=0 | | 5x+12=37whatisx | | 3x-7x=84-10x | | 25y^2=((100-4x^2)/4) | | 960=-8(-9x-21) | | 4+10=3+25 | | -2(7x-5)+4x=5(x+3) | | y^2=((100-4x^2)/4) | | y=x^2+4x+22 | | 4x^2-12x+216=0 | | -9y+5z=2z | | -6x-10=128 | | 18!/(18-15)!15!•0.75^15•0.25^3 | | 8(y-9)/3=-2y | | 3x^2+8x-270=0 | | -2(v-4)=2v+28 | | 1.3x=3.64 | | 23-5.76= | | 2c^2+2c-7=0 | | 3x+(2x+50)=30 | | -100x=1+5x |

Equations solver categories